Abstract

Simple SummaryChicken meat and egg productions are essential for human beings. Sexual maturity is important for both egg production and meat flavor. It is necessary to elucidate the genetic mechanism of chicken sexual maturity. In current study, we used digital gene expression (DGE) RNA-sequencing analysis to investigate differential expression of genes in pre-pubertal and post-pubertal ovaries in two different sub-breeds of chicken with different onsets of sexual maturity. After the analysis of RNA-sequencing data, numerous differentially expressed genes were found in both comparisons (32 day old, early-sexual-maturity pre-laying hens (P-F-O1) vs. 103 day old early-sexual-maturity laying hens (P-F-O2), and 32 day old late-sexual-maturity pre-laying hens (L-F-O1) vs. 153 day old late-sexual-maturity pre-laying hens (L-F-O2)). With the bioinformatic analysis, hen egg protein 21 kDa (HEP21) was chosen as the candidate gene to conduct following experiment. The variations in HEP21 were screened and association analyses between rs315156783 and reproductive traits were investigated in fifth-generation Ningdu Yellow chickens from a closely bred population. These results demonstrated that HEP21 is a candidate gene for sexual maturity and ovary development in chickens. However, the underlying mechanism of how HEP21 regulates chicken sexual maturity needs further focused studies.The age of onset of sexual maturity is an important reproductive trait in chickens. In this study, we explored candidate genes associated with sexual maturity and ovary development in chickens. We performed DGE RNA-sequencing analyses of ovaries of pre-laying (P-F-O1, L-F-O1) and laying (P-F-O2, L-F-O2) hens of two sub-breeds of Ningdu Yellow chicken. A total of 3197 genes were identified in the two comparisons, and 966 and 1860 genes were detected exclusively in comparisons of P-F-O1 vs. P-F-O2 and L-F-O1 vs. L-F-O2, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that genes involved in transmembrane signaling receptor activity, cell adhesion, developmental processes, the neuroactive ligand–receptor interaction pathway, and the calcium signaling pathway were enriched in both comparisons. Genes on these pathways, including growth hormone (GH), integrin subunit beta 3 (ITGB3), thyroid stimulating hormone subunit beta (TSHB), prolactin (PRL), and transforming growth factor beta 3 (TGFB3), play indispensable roles in sexual maturity. As a gene unique to poultry, hen egg protein 21 kDa (HEP21) was chosen as the candidate gene. Differential expression and association analyses were performed. RNA-seq data and qPCR showed that HEP21 was significantly differentially expressed in pre-pubertal and pubertal ovaries. A total of 23 variations were detected in HEP21. Association analyses of single nucleotide polymorphisms (SNPs) in HEP21 and reproductive traits showed that rs315156783 was significantly related to comb height at 84 and 91 days. These results indicate that HEP21 is a candidate gene for sexual maturity in chickens. Our results contribute to a more comprehensive understanding of sexual maturity and reproduction in chickens.

Highlights

  • In animals, sexual maturity is accompanied by aging, changes in tissue morphology, increased body weight, and reproductive competence [1]

  • To identify genes important to the sexual maturity of chicken, we investigated differences in transcriptome profiles in the ovaries of pre-laying and laying hens from two sub-breeds with different sexual maturity age using digital gene expression (DGE) RNA sequencing and identified genes involved in sexual maturity

  • Results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that five pathways were significantly enriched in both comparisons: the intestinal immune network for IgA production, neuroactive ligand–receptor interaction, herpes simplex infection, phagosome, and calcium signaling pathways

Read more

Summary

Introduction

Sexual maturity is accompanied by aging, changes in tissue morphology, increased body weight, and reproductive competence [1]. Many studies have been performed to identify the key genes affecting sexual maturity. The age of onset of sexual maturity is an important reproductive trait in chickens. Sexual maturity in chickens is associated with body weight [6,7]. The genetic mechanisms behind the onset of sexual maturity in chickens are still unclear, and more systematic research on the network of genetic factors responsible for this trait is needed. A previous study on ovaries in different stages of development showed that CCT6A might play a crucial role in sexual maturity in chickens [10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call