Abstract

Transverse aortic constriction (TAC) model is widely used to study pressure overload-induced cardiac remodeling. However, the conserved transcriptional features of TAC model and the underlying regulatory mechanisms remain unclear. In this study, we screened out the high-quality microarray data for ventricular tissue from murine TAC model. The transcriptional changes in ventricular tissue were analyzed by identifying the common differently expressed genes (DEGs) and enriched gene sets. We also analyzed the protein-protein interaction and mRNA-mRNA association of DEGs. Furthermore, the potential regulatory elements of the DEGs were explored through comparative analysis between mouse and human. 265 common DEGs and 45 enriched canonical pathways were identified in murine TAC model. 201 DEGs had the protein-protein interaction, whereas 96 DEGs had mRNA-mRNA association. 99 transcription factor (TF)-mRNA and 2997 microRNA (miRNA)-mRNA regulatory relationships were retrieved. In pressure overload-induced cardiac remodeling, inflammation, fibrosis, metabolic remodeling and hypoxia were significant features. Approaches to intervene these phenomena may have therapeutic values. TFs and miRNAs are important regulator elements of DEGs in both mouse and human. Examination of miRNAs is a promising tool to detect the occurrence of pressure overload-induced cardiac remodeling in patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call