Abstract
Cardiomyocytes with myocarditis compared with the normal state are thought to change the expressions of various genes greatly, some of which may be new biomarkers or new biologic medicinal products. However, until now, little comprehensive analysis has been made of gene-expression changes in cardiomyocytes with myocarditis. In this study, we performed a DNA microarray analysis by using cardiomyocytes from rat experimental autoimmune myocarditis (EAM). On day 0, rats were immunized with porcine cardiac myosin and cardiomyocytes were isolated and purified from EAM hearts and normal hearts by a method that is hardly thought to change gene expressions in cardiomyocytes. RNA from normal cardiomyocytes and cardiomyocytes of EAM on day 18 was analyzed for 7711 gene expressions by DNA microarray. Some gene expressions showed over 10-fold changes. In particular, the regenerated gene (Reg)2/pancreatitis-associated protein (PAP)1 messenger RNA (mRNA) level most markedly increased in the genes, which were clearly expressed in cardiomyocytes rather than in noncardiomyocytes, and it was approximately 2000-fold greater in cardiomyocytes under active myocarditis than normal by real-time reverse transcription polymerase chain reaction analysis. Moreover, we demonstrated that Reg2/PAP1 proteins determined by Western blot analysis and immunohistochemistry and other Reg/PAP family gene expressions were remarkably increased in EAM hearts; in addition, interleukin (IL)-6 expression was significantly related to Reg2/PAP1. It seemed that these data were useful as a reference database of gene-expression changes in cardiomyocytes with myocarditis. The Reg/PAP family, which was found to show dramatically increasing gene expressions by DNA microarray analysis, was suspected to play an important role in myocarditis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.