Abstract

ObjectivesAnti-tumor necrosis factor (TNF) therapy is the treatment of choice for rheumatoid arthritis (RA) patients in whom standard disease-modifying anti-rheumatic drugs are ineffective. However, a substantial proportion of RA patients treated with anti-TNF agents do not show a significant clinical response. Therefore, biomarkers predicting response to anti-TNF agents are needed. Recently, gene expression profiling has been applied in research for developing such biomarkers. MethodsWe compared gene expression profiles reported by previous studies dealing with the responsiveness of anti-TNF therapy in RA patients and attempted to identify differentially expressed genes (DEGs) that discriminated between responders and non-responders to anti-TNF therapy. We used microarray datasets available at the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO). ResultsThis analysis included 6 studies and 5 sets of microarray data that used peripheral blood samples for identification of DEGs predicting response to anti-TNF therapy. We found little overlap in the DEGs that were highly ranked in each study. Three DEGs including IL2RB, SH2D2A and G0S2 appeared in more than 1 study. In addition, a meta-analysis designed to increase statistical power found one DEG, G0S2 by the Fisher's method. ConclusionOur finding suggests the possibility that G0S2 plays as a biomarker to predict response to anti-TNF therapy in patients with rheumatoid arthritis. Further investigations based on larger studies are therefore needed to confirm the significance of G0S2 in predicting response to anti-TNF therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.