Abstract

PurposeTo identify genes potentially involved in the pathogenesis of bile duct obstruction in biliary atresia (BA). MethodsWe used rhesus rotavirus (RRV) Balb/c mouse BA model to study BA. Liver and serum samples were harvested from BA and normal control (NC) groups at 1, 3, 5, 7, 10 and 14 days postinoculation. Serum total bilirubin (STB) and conjugated bilirubin (CB) were measured. Livers of each group at day 7 were used for a genome-wide expression analysis. Expression of TLR7 signaling pathway in liver was measured by immunohistochemical staining and western blotting, including expression of TLR7, activation of phosphorylated IRF7 and secretion of IFN-β, IL-1α and IL-6. Cell viability and survival rate after RRV infection were measured by using TLR7 knockdown human cholangiocarcinoma cell RBE. ResultsSTB was significantly elevated from day 5 postinoculation and CB was from day 7 postinoculation, while CK19 (the biomarker of biliary epithelial cells) expression by western blotting was decreased. By microarray analysis of liver tissues at day 7 postinoculation, TLR7 signaling pathway was up-regulated in BA mice. Based on the results of microarray analysis, the protein expression of TLR7 in the liver tissues of BA groups were found to be up-regulated from day 5 comparing to respective NC groups, although it was increased as pups aged in NC groups. And the level of p-IRF7 and secretion of cytokines were also statistically significant in BA groups. In vitro, TLR7 knockdown cell line showed less cellular proliferation and more susceptible to RRV infection. ConclusionBy in vivo study, TLR7 signal pathway was up-regulated in BA group; by additional in vitro study, intact TLR7 signal pathway might have some protective abilities in BA pathogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call