Abstract
The profound effects of 17beta-estradiol on cell growth, differentiation, and general homeostasis of the reproductive and other systems, are mediated mostly by regulation of temporal and cell type-specific expression of different genes. In order to understand better the molecular events associated with the activation of the estrogen receptor (ER), we have used microarray technology to determine the transcriptional program and dose-response characteristics of exposure to a potent synthetic estrogen, 17 alpha-ethynyl estradiol (EE), during prepubertal development. Changes in patterns of gene expression were determined in the immature uterus and ovaries of Sprague-Dawley rats on postnatal day (PND) 24, 24 h after exposure to EE, at 0.001, 0.01, 0.1, 1 and 10 micro g EE/kg/day (sc), for four days (dosing from PND 20 to 23). The transcript profiles were compared between treatment groups and controls using oligonucleotide arrays to determine the expression level of approximately 7000 annotated rat genes and over 1740 expressed sequence tags (ESTs). Quantification of the number of genes whose expression was modified by the treatment, for each of the various doses of EE tested, showed clear evidence of a dose-dependent treatment effect that follows a monotonic response, concordant with the dose-response pattern of uterine wet-weight gain and luminal epithelial cell height. The number of genes whose expression is affected by EE exposure increases according to dose. At the highest dose tested of EE, we determined that the expression level of over 300 genes was modified significantly (p < or = 0.0001). A dose-dependent analysis of the transcript profile revealed a set of 88 genes whose expression is significantly and reproducibly modified (increased or decreased) by EE exposure (p < or = 0.0001). The results of this study demonstrate that, exposure to a potent estrogenic chemical during prepubertal maturation changes the gene expression profile of estrogen-sensitive tissues. Furthermore, the products of the EE-regulated genes identified in these tissues have a physiological role in different intracellular pathways, information that will be valuable to determine the mechanism of action of estrogens. Moreover, those genes could be used as biomarkers to identify chemicals with estrogenic activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.