Abstract

We examined the expression and localization of the prohormone convertases, PC1 and PC2, in the anterior pituitary cells of developing rats by a double staining procedure using in situ RT-PCR and an immunofluorescence technique. In the adult, both PC1 mRNA and PC2 mRNA were expressed in corticotrophs, gonadotrophs, thyrotrophs, and mammotrophs. These cells, except for corticotrophs, had previously been considered to be ones in which proprotein processing does not take place, but both PC1 and PC2 may be necessary to process other proteins, such as granin family proteins, having proteolytic cleavage sites and located in secretory granules of the above trophs. In addition, no PC1 or PC2 mRNA was expressed in somatotrophs, which is consistent with the fact that somatotrophs do not contain these granins. In addition, 7B2 mRNA was expressed in these PC2-positive trophs, suggesting that there is a functional relationship between PC2 and 7B2 proteins. We found that alpha-MSH was expressed in the corticotrophs of the postnatal rat and that the number of alpha-MSH-immunopositive corticotrophs decreased as development proceeded. Because the changes in the pattern of POMC processing are considered to depend on the relative expression levels of PC1 and PC2, PC1 and PC2 mRNAs were examined in corticotrophs during postnatal development. We found a decrease in the number of PC2 mRNA-positive cells, which coincided with one in the number of alpha-MSH-immunopositive corticotrophs, as postnatal development proceeded. Our present data demonstrate that the alpha-MSH production varies directly in accordance with the expression of PC2. We also discuss the possible significance of alpha-MSH production during the postnatal period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.