Abstract

Transfer of fresh sheep embryos frequently results in higher pregnancy rate compared to cryopreserved ones, possibly due to a failure in the communication between the cryopreserved embryo and the endometrium during pre-implantation and pregnancy establishment. Thus, this study assessed the effect of sheep embryo cryopreservation (slow freezing or vitrification) on embryo survival rate and expression of genes related to trophectoderm differentiation (CDX2), pluripotency maintenance (NANOG), cell proliferation (TGFB1), mitochondrial activity (NRF1) and apoptosis (BAX and BCL2). Superovulation (n = 32 ewes) was performed and embryos were transcervically collected. One hundred good quality (Grade I and II) embryos were allocated into three groups: fresh embryos (CTL; n = 15), slow freezing (SF; n = 42) or vitrification (VT; n = 43). After thawing/warming, three pools of five blastocysts per group were used for RT-qPCR; the remaining 55 embryos were cultured in vitro in SOFaa medium at 38.5 °C and 5% CO2 (SF: n = 27 and VT: n = 28). Survival rate of SF and VT were, respectively, 29.6% (8/27) and 14.2% (4/28) at 24 h; and 48.1% (13/27) and 32.1% (9/28) at 48 h (P > 0.05). Only CDX2 was affected (up-regulated, P < 0.05) in both groups compared to CTL. The BAX transcript was upregulated in VT, compared to SF group. The VT increased (P < 0.05) the expression of all genes, except for NANOG and NRF1, when compared to the CTL. In conclusion, although in vitro survival was similar between techniques, VT led to increased changes in blastocyst gene expression compared to CTL and SF.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call