Abstract

Elucidating the global molecular changes that occur during aromatase inhibitor (AI)- or 17α-methyltestosterone (MT)-induced masculinization and estradiol-17β (E2)-induced feminization is critical to understanding the roles that endocrine and genetic factors play in regulating the process of sex differentiation in fish. Here, fugu larvae were treated with AI (letrozole), MT, or E2 from 25 to 80 days after hatching (dah), and gonadal transcriptomic analysis at 80 dah was performed. The expression of dmrt1, gsdf, foxl2, and other key genes (star, hsd3b1, cyp11c1, cyp19a1a, etc.) involved in the steroid hormone biosynthesis pathway were found be altered. The expression of dmrt1, gsdf, cyp19a1a, and foxl2 was further verified by quantitative polymerase chain reaction. In the control group, the expression of dmrt1 and gsdf was significantly higher in XY larvae than in XX larvae, while the expression of foxl2 and cyp19a1a was significantly higher in XX larvae than in XY larvae (P < .05). AI treatment suppressed the expression of foxl2 and cyp19a1a, and induced the expression of dmrt1 and gsdf in XX larvae. MT treatment suppressed the expression of foxl2, cyp19a1a, dmrt1, and gsdf in XX larvae. E2 treatment suppressed the expression of dmrt1 and gsdf, but did not restore the expression of foxl2 and cyp19a1a in XY larvae. The shared response following AI, MT, and E2 treatment suggested that these genes are essential for sex differentiation. This finding offers some insight into AI or MT-induced masculinization, and E2-induced femininization in fugu.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call