Abstract

ABSTRACTPurpose: The concentration-sensitive sodium channel (NaC) is expressed in alveolar type II epithelial cells and pulmonary microvascular endothelial cells in mouse lungs. We recently reported that NaC contributes to amiloride-insensitive sodium transport in mouse lungs (Respiratory Physiology & Neurobiology, 2016). However, details regarding its physiological role in the lung remain unknown. To examine whether NaC is involved in alveolar fluid clearance during an acute lung injury (ALI), we analyzed the relationship between NaC gene expression in the lung and the development of pulmonary edema in lipopolysaccharide (LPS)-induced ALI mice. Methods: LPS-induced ALI mice were prepared by the intratracheal administration of LPS. Bronchoalveolar lavage (BAL) neutrophils and lung water content (LWCs) were used as a marker of ALI and pulmonary edema, respectively. NaC protein production in the lung was detected by immunoblotting and immunofluorescence. The gene expressions of NaC and the epithelial sodium channel (ENaC) of LPS-induced ALI mice were examined by quantitative RT-PCR over a time course of 14 days. Results: The BAL neutrophil count increased until day 2 after LPS administration and had nearly recovered by day 6. LWCs in LPS-induced mice gradually increased until day 8 and had recovered by day 14. The expression of the NaC protein in the lungs of LPS-induced mice dramatically decreased from day 2 to day 6, but recovered by day 8. The mRNA expression of NaC decreased in the lung, as well as those for α-, β-, and γ-ENaC during ALI. Thus, NaC expression is suppressed during the development stage of pulmonary edema and then recovers in the convalescent phase. Conclusion: Our results suggest that suppression of the gene expression of NaC is involved in the development of pulmonary edema in ALI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call