Abstract

Osteoclast differentiation factor (ODF), a recently identified cytokine of the TNF family, is expressed as a membrane-associated protein in osteoblasts and stromal cells. ODF stimulates the differentiation of osteoclast precursors into osteoclasts in the presence of M-CSF. Here we investigated the effects of LPS on the gene expression of ODF in mouse osteoblasts and an osteoblast cell line and found that LPS increased the ODF mRNA level. A specific inhibitor of extracellular signal-regulated kinase or protein kinase C inhibited this up-regulation, indicating that extracellular signal-regulated kinase and protein kinase C activation was involved. A protein synthesis inhibitor, cycloheximide, rather enhanced the LPS-mediated increase of ODF mRNA, and both a neutralizing Ab of TNF-alpha and a specific inhibitor of PGE synthesis failed to block the ODF mRNA increase by native LPS. Thus, LPS directly induced ODF mRNA. Mouse osteoblasts and an osteoblast cell line constitutively expressed Toll-like receptor (TLR) 2 and 4, which are known as putative LPS receptors. ODF mRNA increases in response to synthetic lipid A were defective in primary osteoblasts from C3H/HeJ mice that contain a nonfunctional mutation in the TLR4 gene, suggesting that TLR4 plays an essential role in the process. Altogether, our results indicate that ODF gene expression is directly increased in osteoblasts by LPS treatment via TLR, and this pathway may play an important role in the pathogenesis of LPS-mediated bone disorders, such as periodontitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.