Abstract

The activity and messenger RNA (mRNA) levels of glucokinase, and the concentration and mRNA levels of its regulatory protein, were analyzed during liver regeneration. The activity of glucokinase and the concentration of its regulatory protein decreased to 30% and 50%, respectively, after liver resection, remaining low after 1 week. No significant variations in the level of these proteins were found in sham-operated animals. The regulatory protein/glucokinase molar ratio increased during the replicative phase, to a maximum at 48 hours. The mRNA levels of glucokinase and of its regulatory protein decreased rapidly after partial hepatectomy to minimum values at 6 hours (15%) and at 12 hours (4%), respectively, returning to normal values at 24 hours and 168 hours, respectively. Sham-operated animals showed a similar decrease in mRNA levels during the prereplicative phase of liver regeneration, suggesting that the initial effects observed in the gene expression of these proteins were due to surgical stress. During the replicative phase, a specific inhibition of the regulatory protein's gene expression was observed in the regenerating liver. A decrease in the content of regulatory protein and the glucokinase activity, and an increase in the molar ratio of these two proteins correlate with the observed decrease in glycolytic flux, providing further evidence that the phosphorylation of glucose is a control point in the glycolytic/gluconeogenic flux during liver regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call