Abstract

Transfer of genetic information from isolated hamster chromosomes to mouse cells is described. Metaphase chromosomes isolated from Chinese hamster diploid cells were incubated with mouse Cl. 1-d cells deficient in thymidine kinase activity. Two viable colonies appeared from the treated mouse cells after HAT selection with a frequency of about 10 −8. The first colony isolated (Cl. 1) failed to grow, however. The second colony isolated (Cl. 2) grew well in HAT medium and was subcultured for more than 70 generations. Cl. 2 cells possessed an elevated tetrahydrofolate dehydrogenase activity of molecular species resembling that of Chinese hamster cells, as shown by disc electrophoresis. The cell line also expressed surface antigen(s) specific to hamster species, as shown by mixed hemadsorption test and immune cell electrophoresis. This latter phenotype disappeared after prolonged cultivation (59 generations) of the cells in non-selective medium. The karyotype of Cl. 2 cells corresponded to that of the mouse species and was quite different from that of hamster cells. Hamster chromosomes could not be identified in any of the cell clones by detailed analysis by the banding method (Q- and C-band). Not one revertant cell was obtained among 4.2×10 8 Cl. 1-d cells in the control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call