Abstract

We address the problem of using expression data and prior biological knowledge to identify differentially expressed pathways or groups of genes. Following an idea of Ideker et al. (2002), we construct a gene interaction network and search for high-scoring subnetworks. We make several improvements in terms of scoring functions and algorithms, resulting in higher speed and accuracy and easier biological interpretation. We also assign significance levels to our results, adjusted for multiple testing. Our methods are successfully applied to three human microarray data sets, related to cancer and the immune system, retrieving several known and potential pathways. The method, denoted by the acronym GXNA (Gene eXpression Network Analysis) is implemented in software that is publicly available and can be used on virtually any microarray data set. The source code and executable for the software, as well as certain supplemental materials, can be downloaded from http://stat.stanford.edu/~serban/gxna.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.