Abstract

MotivationDeciphering the functional roles of cis-regulatory variants is a critical challenge in genome analysis and interpretation. It has been hypothesized that altered transcription factor (TF) binding events are a central mechanism by which cis-regulatory variants impact gene expression levels. However, we lack a computational framework to understand and quantify such mechanistic contributions.ResultsWe present TF2Exp, a gene-based framework to predict the impact of altered TF-binding events on gene expression levels. Using data from lymphoblastoid cell lines, TF2Exp models were applied successfully to predict the expression levels of 3196 genes. Alterations within DNase I hypersensitive, CTCF-bound and tissue-specific TF-bound regions were the greatest contributing features to the models. TF2Exp models performed as well as models based on common variants, both in cross-validation and external validation. Combining TF alteration and common variant features can further improve model performance. Unlike variant-based models, TF2Exp models have the unique advantage to evaluate the functional impact of variants in linkage disequilibrium and uncommon variants. We find that adding TF-binding events altered only by uncommon variants could increase the number of predictable genes (R2 > 0.05). Taken together, TF2Exp represents a key step towards interpreting the functional roles of cis-regulatory variants in the human genome.Availability and implementationThe code and model training results are publicly available at https://github.com/wqshi/TF2Exp.Supplementary information Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.