Abstract

The non-uniformity of gene expression data is one of the factors that make gene expression analysis difficult. Gene expression data often do not follow a normal distribution but rather various distributions within each group. Thus, it is impossible to apply basic statistical techniques such as the t-test. In this study, we have developed an analysis method for gene expression data obtained by microarrays using a fuzzy logic algorithm with original membership functions. The method automatically evaluates the data from a histogram of gene expression information for a patient group. Using this method, we predicted the efficacy of an anti-TNF-α treatment for rheumatoid arthritis. We created a prediction model for the effects of 14 weeks of anti-TNF-α treatment based on the gene expression data from the peripheral blood of rheumatoid arthritis patients before the treatment. The model had a predictive success of 89% in the model-establishing data group, 94% in the training group, and 89% in the validation group. The results suggest that the method presented here could be an extremely effective tool for gene expression analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.