Abstract

Ethylenediurea (EDU) is the most common chemical used to prevent ozone (O3) injury on vegetation. Despite considerable research, its mode of action remains elusive and gene expression has not been studied. Transcripts of major antioxidant enzymes (catalase, glutathione reductase, glutathione peroxidase) were measured for the first time in a model plant (Phaseolus vulgaris cv S156) after short-term O3 exposure (0 or 90 ppb, 5 h/d, 4 days) and a single spray with EDU (0 or 300 ppm). Visible, physiological and biochemical parameters were assessed as indices of O3-induced stress. In O3-exposed EDU-protected plants, levels of transcript, enzyme activity, H2O2 accumulation, gas exchange and foliar visible injury were similar to those in control plants. These results suggest that EDU may halt the O3-induced ROS generation within 24 h from the exposure, and thus the downstream cascade mechanisms leading to increased H2O2 production, impaired gas exchange, and occurrence of leaf lesions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.