Abstract

BackgroundTetralogy of Fallot (TOF) is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot.MethodsWe employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions) and compared gene expression patterns to normally developing subjects.ResultsWe detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV) of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation). However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, p = 0.017 and Notch, p = 0.003) appeared to be generally suppressed.ConclusionsThe suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.

Highlights

  • Tetralogy of Fallot (TOF) is the most commonly observed conotruncal congenital heart defect

  • The molecular genetic components contributing to idiopathic congenital heart disease (CHD) may include accumulation of multiple rare genomic and epigenetic variants converging to dysregulate cardiac developmental genes leading to mutational loading of developmental networks [3]

  • We detected the signal of approximately 26,000 probes on our microarrays representing about 50% of the genome using RNA isolated from the right ventricle (Table 1)

Read more

Summary

Introduction

Tetralogy of Fallot (TOF) is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. The development of integrated cardiovascular tissue is the result of multiple cell to cell interactions involving temporal and spatial events under genetic control. A multitude of genes and genetic networks contribute to the spatial and temporal specification of cell lineage required for proper embryological heart formation [2]. The molecular genetic components contributing to idiopathic CHD may include accumulation of multiple rare genomic and epigenetic variants converging to dysregulate cardiac developmental genes leading to mutational loading of developmental networks [3]. A better understanding of the molecular genetic contributions to CHD is needed

Objectives
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.