Abstract

Abstract Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae) is one of the most predominant calliphorid species which arrives and colonizes a cadaver first in its native range of the Australian and Oriental regions, and the intra-puparial stage of this species accounts for about half of its immature stage. Therefore, establishing a reliable aging method of the intra-puparial stage of C. megacephala is very important to accurately estimate the minimum postmortem interval (PMImin). In this study, actin was used as an internal reference gene to study the expression of three genes, ecdysone receptor gene ecr, white-eye gene white, and heat shock protein gene hsp70, at different time points during intra-puparial development of C. megacephala. Quantification through real-time PCR revealed that these genes can be used to age the intra-puparial period of C. megacephala as they exhibit regular changes and gene expression level was temperature-dependent. The overall gene expression profile of ecr showed a downward trend throughout the intra-puparial stage. White expression increased steadily until it peaked when intra-puparial development reached 45%, and the expression began to decrease when the intra-puparial development reached 55%. hsp70 was first down-regulated at 0–15% of intra-puparial development, and then slightly up-regulated at 15–40%, and finally down-regulated again until the end of intra-puparial development. This study provides molecular indicators of age during the intra-puparial stage of C. megacephala, and combining gene expression with the morphological methods can lead to more accurate estimation for PMImin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call