Abstract

Detailed understanding of the basic events in fracture healing constitutes a foundation for the development of new approaches to stimulate bone healing. Since the fracture healing process repeats, in an adult organism, several stages of skeletal growth in the same temporal order, it offers an interesting model for developmental regulation of cellular phenotypes and tissue-specific genes. Molecular biology has introduced new methods to study the regulatory phenomena during the process of fracture repair. Gene technology has also produced purified growth factors for research, which will help to understand their roles in fracture healing. This review summarizes data on the regulation of genes coding for extracellular matrix components and growth regulatory molecules during fracture healing. The information available focuses on the sequential expression of genes coding for collagens, proteoglycans, and some other matrix proteins during secondary (callus) healing. The temporal and spatial appearance of the different connective tissue components, mesenchyme, cartilage, and bone, are closely linked to the expression of genes coding for their characteristic constituents. Members of the transforming growth factor-beta superfamily, such as the bone morphogenetic proteins (BMP), are currently the most interesting ones among the factors that regulate chondrogenesis and osteogenesis. In the coming years, the availability of new cloned probes combined with sensitive analytical methods, as reviewed here, will add greatly to our understanding of the various aspects of gene expression during bone repair. This information should provide answers to some of the unresolved questions in fracture callus development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.