Abstract

We investigated the molecular changes in fetoplacental blood vessel endothelial cells in gestational diabetes mellitus (GDM). Raw gene expression profile data of arterial and venous endothelial cells from GDM complicated pregnancies and healthy controls were downloaded and used for bioinformatic analysis. There were two differentially expressed genes (DEGs) in venous endothelial cells and 178 DEGs in arterial endothelial cells induced by GDM. The altered genes were clustered to pathways associated with cell cycle, p53 signaling pathway, and cellular senescence. The disease associated gene-pathway network that was constructed comprised eight down-regulated genes (including FBXO5, CCNB1, and CDK1), one up-regulated gene (CCND2), hsa04068: FoxO signaling pathway and hsa04114: Oocyte mitosis pathway. CCND2 was a significant node in the microRNA (miRNA)-target network, which was regulated by seven miRNAs that included hsa-miR-1299, hsa-miR-1200, and hsa-miR-miR-593-5p. FBXO5 was a significant node regulated by two miRNAs. CCND2 and FBXO5 were also the significant nodes in the transcriptional factors-target network and integrated regulatory network. The cell cycle pathway was significantly altered in arterial endothelial cells during GDM, which was involved with the differential expression of CCND2 and FBXO5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call