Abstract

Diabetic kidney disease (DKD) is a leading cause of end-stage renal disease. Because the molecular mechanisms of DKD are not fully understood, exploration of hub genes and the mechanisms underlying this disease are essential for elucidating the pathogenesis and progression of DKD. Accordingly, in this study, we performed an analysis of gene expression in DKD. The differentially expressed genes (DEGs) included 39 upregulated genes and 113 downregulated genes in the GSE30528 dataset and 127 upregulated genes and 18 downregulated genes in the GSE30529 dataset. Additionally, functional analyses were performed to determine the roles of DEGs using glomeruli samples from patients with DKD and healthy controls from the GSE30528 dataset and using tubule samples from patients with DKD and healthy controls from the GSE30529 dataset. These DEGs were enriched in pathways such as the Wnt signaling pathway, metabolic pathways, and the mammalian target of rapamycin signaling pathway in the GSE30528 dataset and the longevity regulating pathway and Ras signaling pathway in the GSE30529 dataset. Moreover, a protein-protein interaction network was constructed using the identified DEGs, and hub gene analysis was performed. Furthermore, correlation analyses between key genes and pathological characteristics of DKD indicated that CCR4, NTNG1, HGF and ISL1 are related to DKD, and NTNG1 and HGF may server as diagnostic biomarkers in DKD using the receiver–operator characteristic (ROC) curve. Collectively, our findings established 2 reliable biomarkers for DKD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call