Abstract

Despite improvements in understanding the pathogenic mechanisms of primary glomerular diseases, therapy still remains nonspecific. We sought to identify novel therapies targeting kidney-intrinsic injury of distinct primary glomerulonephritides through computational systems biology approaches. We defined the unique transcriptional landscape within kidneys from patients with focal segmental glomerulosclerosis (FSGS), minimal change disease (MCD), immunoglobulin A nephropathy (IgAN), membranous nephropathy (MN) and thin basement membrane nephropathy (TBMN). Differentially expressed genes were functionally annotated with enrichment analysis, and distinct biological processes and pathways implicated in each primary glomerular disease were uncovered. Finally, we identified novel drugs and small-molecule compounds that may reverse each glomerulonephritis phenotype, suggesting they should be further tested as precise therapy in primary glomerular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.