Abstract
Tibial dyschondroplasia (TD) is a skeletal deformity associated with rapid growth in a number of avian species. The disease is the result of a disruption in the cascade of events that occur in the epiphyseal growth plate. Whereas the incidence of TD is susceptible to genetic selection, no specific genetic defect has been identified. Although there are extensive data describing the morphological and biochemical characteristics of the lesion, the mechanism of lesion formation is unknown. However, naturally occurring or induced genetic mutations in other species can provide important clues to possible mechanisms responsible for lesion development. Disruption of normal chondrocyte differentiation by constitutive activation of the parathyroid hormone/parathyroid hormone-related peptide (PTH/PTHrP) receptor, inactivation of the fibroblast growth factor receptor-3 (FGFR-3) receptor, and blocking vascular endothelial growth factor (VEGF) signaling all result in lesions that resemble TD. Impairment of vascular penetration due to the ablation of matrix metalloproteinase-9 (MMP-9) or tartrate-resistant acid phosphatase (TRAP) activity also results in similar cartilage abnormalities. We have integrated these observations with our current knowledge of TD to describe a hypothesis for the sequence of events responsible for the development of tibial dyschondroplastic lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.