Abstract

ABSTRACT The X-ray repair cross-complementing gene (XRCC) family participates in DNA damage repair and its dysregulation is associated with the development and progression of a variety of cancers. However, XRCCs have not been systematically studied in non-small cell lung cancer (NSCLC). Using The Cancer Genome Atlas (TCGA) and Oncomine databases, we compared the expression levels of XRCCs between NSCLC and normal tissues and performed survival analysis using the data from TCGA. The correlations of XRCCs with the clinical parameters were then analyzed using UCSC Xena. Genetic alterations in XRCCs in NSCLC and their effects on the prognosis of patients were presented using cBioPortal. SurvivalMeth was used to explore the differentially methylated sites associated with NSCLC and their effect on prognosis. Next, the immunological correlations of XRCCs expression level were analyzed using TIMER 2.0. Finally, GeneMANIA was used to visualize and analyze the functionally relevant genes, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for functional and pathway enrichment analyses of prognostic genes. Our results revealed that XRCCs were overexpressed in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Univariate and multivariate Cox analyses showed that XRCC4/5/6 were independent risk factors for LUAD. Additionally, genetic alterations, methylation, and immune cell infiltration demonstrated an association between XRCC4/5/6 and poor prognosis in LUAD. Finally, the KEGG-enriched and non-homologous end-joining (NHEJ) pathways were shown to be associated with XRCC4/5/6. In conclusion, our study demonstrated that XRCC4/5/6 could be used as diagnostic and prognostic biomarkers for LUAD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call