Abstract

BackgroundThe choroid plexus epithelium (CPE) is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF), which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE.MethodsWe performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data.ResultsOverall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural) developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE.ConclusionHuman and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE between mouse and man differ with respect to transport and metabolic functions.

Highlights

  • The choroid plexus epithelium (CPE) is a single neural cell layer, which folds itself into a cauliflower-like structure, protruding in the lateral, third, and fourth brain ventricles

  • For the three expressed mouse CPE genes compared to human CPE, we found high expression of angiotensin-converting enzyme (ACE) and moderate expression of paraoxonase/arylesterase 1 (PON1) and tripartite motif-containing protein 3 (TRIM3) in all mouse CPE gene expression datasets

  • We identified low expression of TRIM3 in the human CPE expression dataset GSE14098; for ACE and PON1, no additional human CPE data were available in GSE14098

Read more

Summary

Introduction

The choroid plexus epithelium (CPE) is a single neural cell layer, which folds itself into a cauliflower-like structure, protruding in the lateral, third, and fourth brain ventricles. The CPE plays a crucial role in the fluid pressure and balance in the brain ventricles, metabolism of the brain, cellular functions of neurons, immunological and inflammatory process, neurosignaling, neuroprotection after ischemia, and neurodegeneration. The choroid plexus epithelium (CPE) is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF), which is crucial for brain homeostasis. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.