Abstract

The pre-implantation period of mammalian development includes the formation of the zygote, the activation of the embryonic genome (EGA), and the beginning of cellular differentiation. During this period, protamines are replaced by histones, the methylated haploid parental genomes undergo demethylation following formation of the diploid zygote, and maternal control of development is succeeded by zygotic control. Superimposed on this activation of the embryonic genome is the formation of a chromatin-mediated transcriptionally repressive state requiring enhancers for efficient gene expression. The development of this transcriptionally repressive state most likely occurs at the level of chromatin structure, because inducing histone hyperacetylation relieves the requirements for enhancers. Characterization of zygotic mRNA expression patterns during the pre-implantation period and their relationship to successful development in vitro and in vivo will be essential for defining optimized culture conditions and nuclear transfer protocols. The focus of this review is to summarize recent advances in this field and to discuss their implications for developmental biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.