Abstract

Tomato fruit (Solanum lycopersicum L.) can develop mealiness and enhanced softening when exposed to chilling temperatures during storage, but the involvement of cell wall-associated enzymes in chilling injury development is not well understood. To study this aspect of injury development, we have exposed breaker-stage `Trust' tomato fruit to a chilling temperature of 3 °C for 0, 7, 14, and 21 days followed by storage at 20 °C for 12 days. Ethylene production was not affected by storage except after 21 days where production was greater at 20 °C. Exposure of fruit to chilling temperatures delayed the ripening-related color change (chroma and hue) and initially increased compression values, but percent extractable juice was not affected consistently. Increased polygalacturonase (PG) activity during ripening was reduced by about 50% after 7 days at 3 °C, and further inhibited with increasing storage periods. In contrast, the activities of pectin methylesterase (PME) and α-galactosidase were not significantly affected by the cold treatments. β-Galactosidase activity was greater in all chilled fruit compared with fruit ripened at harvest, whereas endo-β-1,4-glucanase activity was lower after 21 days at 3 °C. In chilled fruits, transcript accumulations for PG, PME (PME1.9), and expansin (Expt.1) were lower during storage at 20 °C compared with those of nonchilled fruits. Transcript accumulation for β-galactosidase (TBG4) was affected only at 14 days of cold storage, when transcript accumulation decreased. Cold treatment increased transcript accumulation of endo-β-1,4-glucanase (Cel1) after 12 days at 20 °C and decreased transcript accumulation after 7 days and 21 days at 21 °C. Cell wall analyses to investigate relationships among enzyme activities and cell wall disassembly are ongoing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call