Abstract

BackgroundInterspecific hybrids of frogs of the genus Xenopus result in sterile hybrid males and fertile hybrid females. Previous work has demonstrated a dramatic asymmetrical pattern of misexpression in hybrid males compared to the two parental species with relatively few genes misexpressed in comparisons of hybrids and the maternal species (X. laevis) and dramatically more genes misexpressed in hybrids compared to the paternal species (X. muelleri). In this work, we examine the gene expression pattern in hybrid females of X. laevis × X. muelleri to determine if this asymmetrical pattern of expression also occurs in hybrid females.ResultsWe find a similar pattern of asymmetry in expression compared to males in that there were more genes differentially expressed between hybrids and X. muelleri compared to hybrids and X. laevis. We also found a dramatic increase in the number of misexpressed genes with hybrid females having about 20 times more genes misexpressed in ovaries compared to testes of hybrid males and therefore the match between phenotype and expression pattern is not supported.ConclusionWe discuss these intriguing findings in the context of reproductive isolation and suggest that divergence in female expression may be involved in sterility of hybrid males due to the inherent sensitivity of spermatogenesis as defined by the faster male evolution hypothesis for Haldane's rule.

Highlights

  • Interspecific hybrids of frogs of the genus Xenopus result in sterile hybrid males and fertile hybrid females

  • Analyses of spermatogenesis in hybrid males of X. laevis × X. muelleri have shown that males have a dramatically lower abundance of motile sperm, increased numbers of undifferentiated sperm cells, and larger mature sperm cells compared to parental species [2]

  • Using adjusted significance tests (P < 0.05), about 14% (1,616/11,485) of genes were differentially expressed in hybrid females compared to females of X. laevis and 63% (7,279/11,485) of genes were differentially expressed between hybrids and X. muelleri (Fig. 1)

Read more

Summary

Introduction

Interspecific hybrids of frogs of the genus Xenopus result in sterile hybrid males and fertile hybrid females. BMC Evolutionary Biology 2008, 8:82 http://www.biomedcentral.com/1471-2148/8/82 sion pattern for hybrid males shows a striking asymmetric pattern in that relatively few genes are differentially expressed between hybrids and the maternal species (X. laevis) whereas there are dramatically more genes differentially expressed between hybrid males and the paternal species, X. muelleri. These results suggest intriguing mechanisms operating on the transcriptome in hybrid males of Xenopus that may reflect strong maternal and/or species dominance effects [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call