Abstract

It can be observed from aminoglycoside-induced hair cell damage that the cochlea basal turn is more susceptible to trauma than the apex. Drug-induced hearing loss is closely related to oxidative damage. The basilar membrane directly exposed to these ototoxic drugs exhibits differences in damage, indicating that there is an inherent difference in the sensitivity to oxidative damage from the apex to the base of the cochlea. It has been reported that the morphology and characteristics of the cochlea vary from the apex to the base. Therefore, we investigated oxidative stress-related gene expression profiles in the apical, middle, and basal turns of the cochlea. The Oxidative Stress RT2 Profiler™ PCR Array revealed that three of the 84 genes (Mb, Mpo, and Ncf1) were upregulated in the middle turn compared to their level in the apical turn. Moreover, eight genes (Mb, Duox1, Ncf1, Ngb, Fmo2, Gpx3, Mpo, and Gstk1) were upregulated in the basal turn compared to their level in the apical turn. The qPCR verification data were similar to that of the PCR Array. We found that MPO was expressed in the rat cochlea and protected against gentamicin-induced hair cell death. This study summarized the data for the gradient of expression of oxidative stress-related genes in the cochlea and found potential candidate targets for prevention of ototoxic deafness, which may provide new insights for cochlear pathology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.