Abstract

IntroductionMembrane transport proteins (transporters) play a crucial role in the transmembrane uptake and/or efflux of various compounds such as inorganic ions, endogenous bioactive substances such as prostaglandins (PGs), and drugs such as nonsteroidal anti-inflammatory drugs. This study aimed to analyze mRNA expression of selected transporters related to drug disposition and PG transport in normal and lipopolysaccharide (LPS)-inflamed rat incisor pulp. MethodsPulp tissues were subjected to reverse transcription-polymerase chain reaction (PCR) detection for transporter isoforms belonging to organic anion transporting polypeptide (Oatp), organic anion transporter (Oat), organic cation transporter (Oct), multidrug resistance-associated protein (Mrp), and multidrug resistance protein (Mdr) families. The levels of mRNA expression for PG transporters (Oatp1a5, Oatp1b2, Oatp2a1, Oatp2b1, and Oatp3a1) were compared in normal and LPS-inflamed pulps by using real-time PCR. ResultsThe pulp tissue expressed mRNAs for various transporters belonging to the Oatp, Oat, Oct, Mrp, and Mdr families. LPS inflammation caused significant up-regulation of Oatp2a1 (P < .01) and significant down-regulation of Oatp1a5, Oatp2b1 (P < .01), and Oatp3a1 (P < .05). ConclusionsRat incisor dental pulp expressed mRNAs for various transporter isoforms. The levels of mRNA expression for PG transporters were significantly up-regulated or down-regulated in LPS-inflamed dental pulp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.