Abstract

Dupuytren's disease is characterised by nodular fibroblastic proliferation of the palmar fascia leading to contracture of the hand. Transforming growth factor beta (TGF-beta) is thought to play a role in its pathogenesis. We performed a cDNA microarray analysis of Dupuytren's diseased cord tissue with an emphasis on TGF-beta isoforms. Normal-appearing transverse ligament of the palmar fascia from adjacent to the diseased cord and palmar fascia from patients undergoing carpal tunnel release were used as controls. TGF-beta gene expression was confirmed by quantitative real-time polymerase chain reaction. Over 20 unique genes were found to be significantly up-regulated, including several previously reported genes. A dominant increase in TGF-beta2 expression was seen in the cord tissue, whereas TGF-beta1 and TGF-beta3 were found not to be significantly up-regulated. Quantitative real-time polymerase chain reaction confirmed these findings. This gene expression profile allows for further experiments that may eventually lead to gene therapy to block the development and progression of Dupuytren's disease clinically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.