Abstract

mRNA expression profiles in the liver from mice treated with flumequine (FL) were analyzed in order to elucidate the mechanism of its tumor-promoting effect. The liver from a C3H/He mouse that received a diet containing 4,000 ppm of FL for 4 weeks was examined by cDNA microarray in comparison with an untreated mouse. Furthermore, to obtain a more comprehensive sequence, time-course changes in selected genes were determined by real-time RT-PCR. Microarray analysis revealed 15 upregulated and 9 downregulated genes in an FL-treated mouse. The upregulated genes included signal transducers and cell cycle regulators. In addition, the levels of stress response genes, particularly glutathione S-transferase (GST) alpha and GSTmu, were very high, indicating the generation of oxidative stress. On the other hand, the downregulated genes included phase I metabolic enzymes, such as cytochrome P450 (CYPs) enzymes, and apoptosis-associated proteins. These changes were confirmed by quantitative RT-PCR and were generally consistent with each other. Time-course observations revealed consistent results, particularly with regard to GSTalpha, GSTmu, ERK5, and CYP2E1. In addition, the expression of 8-oxoguanine DNA glycosylase 1 (OGG1) was increased in a time-dependent manner. These results suggest the possibility that responses against oxidative stress may play a major role in hepatocarcinogenesis by FL in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.