Abstract

Understanding molecular basis involved in overweight is an important first step in developing therapeutic pathways against excess in body weight gain. The purpose of our pilot study was to evaluatethe gene expression profiles in the peripheral blood of obese patients without other metabolic complications. A sample of 17 obese patients without metabolic syndrome and 15 non obese control subjects was evaluated in a prospective way. Following 'One-Color Microarray-Based Gene Expression Analysis' protocol Version 5.7 (Agilent p/n 4140-90040), cRNA was hybridized with Whole Human Genome Oligo Microarray Kit (Agilent p/n G2519F-014850) containing 41,000+ unique human genes and transcripts. The average age of the study group was 43.6±19.7 years with a sex distribution of 64.7% females and 35.3% males. No statistical differences were detected with healthy controls 41.9±12.3 years with a sex distribution of 70% females and 30% males. Obese patients showed 1436 genes that were differentially expressed compared to control group. Ingenuity Pathway Analysis showed that these genes participated in 13 different categories related to metabolism and cellular functions. In the gene set of cellular function, the most important genes were C-terminal region of Nel-like molecule 1 protein (NELL1) and Pigment epithelium-derived factor (SPEDF), both genes were over-expressed. In the gene set of metabolism, insulin growth factor type 1 (IGF1), ApoA5 (apolipoprotein subtype 5), Foxo4 (Forkhead transcription factor 4), ADIPOR1 (receptor of adiponectin type 1) and AQP7 (aquaporin channel proteins7) were over expressed. Moreover, PIKFYVE (PtdIns(3) P 5-kinase), and ROCK-2 (rho-kinase II) were under expressed. We showed that PBMCs from obese subjects presented significant changes in gene expression, exhibiting 1436 differentially expressed genes compared to PBMCs from non-obese subjects. Furthermore, our data showed a number of genes involved in relevant processes implicated in metabolism, with genes presenting high fold-change values (up-regulation and down regulation) associated with lipid, carbohydrate and protein metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call