Abstract

The Basidiomycete Heterobasidion irregulare was recently sequenced and three cerato-platanin encoding genes were found in its genome (HiCPs). Cerato-platanin family proteins (CPPs) are produced by both plant pathogenic and non-pathogenic fungi, and can act both as virulence factors and elicitors of defence responses. In fungal life, these proteins seem to play a dual role, in the fungal cell wall and in the fungus–plant interaction, but most data available to date on CPPs derive from studies performed on Ascomycetes. In the present study, we investigated the expression of HiCPs in three homokaryotic isolates and two heterokaryotic isolates of the forest pathogen H. irregulare. Transcription of HiCPs was analysed both at the edge and at the centre of the fungal colony and compared between homokaryon and heterokaryon. The results showed that only HiCP1 and HiCP2 are likely to be translated in H. irregulare and that, under the tested conditions, HiCP1 is the gene with by far the highest transcript abundance among HiCPs. HiCP1 did not show any preferential expression in different sections of the fungal colony, while HiCP2 was significantly more expressed at the colony centre, thus suggesting a link with the production of conidia. The level of expression of HiCPs in heterokaryons was generally comparable to that of one or both the parental homokaryons, irrespective of the colony section, thus demonstrating that HiCPs are not transcriptionally influenced by the heterokaryotic stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.