Abstract
The ovary is a heterogeneous organ composed of different cell types. To study the molecular mechanisms occurring during folliculogenesis, the localization of proteins and gene expression can be performed on fixed tissue. However, to properly assess gene expression levels in a human follicle, this complex and delicate structure must be isolated. Hence, an adapted protocol previously described by Woodruff's laboratory has been developed to separate follicles (the oocyte and the granulosa cells) from their surrounding environment. The ovarian cortical tissue is first manually processed to obtain small fragments using two tools: a tissue slicer and a tissue chopper. The tissue is then enzymatically digested with 0.2% collagenase and 0.02% DNase for at least 40 min. This digestion step is performed at 37 °C and 5% CO2 and is accompanied by mechanical pipetting of the medium every 10 min. After incubation, the isolated follicles are collected manually using a calibrated microcapillary pipette under microscope magnification. If follicles are still present in the pieces of tissue, the procedure is completed with manual microdissection. The follicles are collected on ice in a culture medium and are rinsed twice in droplets of phosphate-buffered saline solution. This digestion procedure must be carefully controlled to avoid follicle deterioration. As soon as the structure of the follicles appears to be compromised or after a maximum of 90 min, the reaction is stopped with a 4 °C blocking solution containing 10% fetal bovine serum. A minimum of 20 isolated follicles (sized under 75 µm) should be collected to obtain an adequate amount of total RNA after RNA extraction for real-time quantitative polymerase chain reaction (RT-qPCR). After extraction, the quantification of total RNA from 20 follicles reaches a mean value of 5 ng/µL. The total RNA is then retrotranscribed into cDNA, and the genes of interest are further analyzed using RT-qPCR.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.