Abstract

A molecular and metabolic behaviour of EPS-producing and salt-tolerant bacterium Rhizobium radiobacter SZ4S7S14 along with its practical application in salt-stress was investigated. The research target was identification and expression profiles of a large EPS biosynthesis gene cluster, possible structural modification of EPS under salt-stress effect and analysis of the gene(s) relative expression and structural modification correlation. As expected, transposons insertions were identified within or near the coding regions of exoK and exoM, previously known large gene cluster that is required for EPS I synthesis. Different expression levels of exoK and exoM in different salt-stress models resulted in structural modification of EPS, which was seen basically in monomers molar ratio. As a result of downregulation of the genes the strain produced EPS samples with monomers ratio: (1) Glu:Man:Gal:Xyl:Ara:Rha:Rib = 31.21:3.02:2.77:1:0.91:0.64:0.41 (in 0.25% NaCl); (2) Glu:Man:Gal:Xyl:Ara:Rha:Rib = 7.65:1:0.69:0.22:0.2:0.16:0.1 (in 0.5% NaCl); (3) Glu:Man:Gal:Ara:Xyl:Rha:Rib = 9.39:1.89:1:0.58:0.52:0.46:0.26 (in 1% NaCl); and (4) Glu:Man:Ara:Xyl:Rib:Gal = 7.9:2:2:1.58:1.1:1 (in 2.0% NaCl), whereas in control (without NaCl): Glc:Man:Gal:Xyl:Ara:Rha:Rib = 11.66:1:0.90:0.37:0.37:0.15:0.14. It was found that, salt-stress not only leads to downregulation of a large EPS biosynthesis gene cluster, including exoK and exoM genes, but also impacting on their relative expression degree, re-groups of the monomers within the EPS matrix and dictates molar ratio of the monosaccharides in the final metabolite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.