Abstract

Gene editing using engineered endonucleases, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nucleases, requires the creation of a targeted, chromosomal DNA double-stranded break (DSB). In mammalian cells, these DSBs are typically repaired by one of the two major DNA repair pathways: nonhomologous end joining (NHEJ) or homology-directed repair (HDR). NHEJ is an error-prone repair process that can result in a wide range of end-joining events that leads to somewhat random mutations at the site of DSB. HDR is a precise repair pathway that can utilize either an endogenous or exogenous piece of homologous DNA as a template or "donor" for repair. Traditional gene editing via HDR has relied on the co-delivery of a targeted, engineered endonuclease and a circular plasmid donor construct. More recently, it has been shown that single-stranded oligodeoxynucleotides (ssODNs) can also serve as DNA donors and thus obviate the more laborious and time-consuming plasmid vector construction process. Here we describe the use of ssODNs for making defined genome modifications in combination with engineered endonucleases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.