Abstract

First-generation adoptive T-cell transfer (ACT) administering tumor-infiltrating lymphocytes (TILs), and second-generation ACT using autologous T cells genetically modified to express tumor-specific T-cell receptors (TCRs) or chimeric antigen receptors (CARs) have both shown promise for the treatment of several cancers, including melanoma, leukemia and lymphoma. However, these treatments require labor-intensive manufacturing of the cell product for each patient, frequently utilize lentiviral or retroviral vectors to genetically modify the T cells, and have limited antitumor efficacy in solid tumors. Gene editing is revolutionizing the field of gene therapy, and ACT is at the forefront of this revolution. Gene-editing technologies can be used to re-engineer the phenotype of T cells to increase their antitumor potency, to generate off-the-shelf ACT products, and to replace endogenous TCRs with tumor-specific TCRs or CARs using homology-directed repair (HDR) donor templates. Adeno-associated viral vectors or linear DNA have been used as HDR donor templates. Of note, non-viral delivery substantially reduces the time required to generate clinical-grade reagents for manufacture of T-cell products—a critical step for the translation of personalized T-cell therapies. These technological advances in the field using gene editing open the door to the third generation of ACT therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.