Abstract

Voltage-gated sodium channels underlie action potential generation in excitable tissue. To establish the evolutionary mechanisms that shaped the vertebrate sodium channel alpha-subunit (SCNA) gene family and their encoded Nav1 proteins, we identified all SCNA genes in several teleost species. Molecular cloning revealed that teleosts have eight SCNA genes, compared to ten in another vertebrate lineage, mammals. Prior phylogenetic analyses have indicated that the genomes of both teleosts and tetrapods contain four monophyletic groups of SCNA genes, and that tandem duplications expanded the number of genes in two of the four mammalian groups. However, the number of genes in each group varies between teleosts and tetrapods, suggesting different evolutionary histories in the two vertebrate lineages. Our findings from phylogenetic analysis and chromosomal mapping of Danio rerio genes indicate that tandem duplications are an unlikely mechanism for generation of the extant teleost SCNA genes. Instead, analyses of other closely mapped genes in D. rerio as well as of SCNA genes from several teleost species all support the hypothesis that a whole-genome duplication was involved in expansion of the SCNA gene family in teleosts. Interestingly, despite their different evolutionary histories, mRNA analyses demonstrated a conservation of expression patterns for SCNA orthologues in teleosts and tetrapods, suggesting functional conservation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.