Abstract
Arylalkylamine N-acetyltransferase (AANAT) plays a crucial role in synchronizing internal biological functions to circadian and circannual changes. Generally speaking, only one copy of AANAT gene has been found in mammals, however, three independent duplications of this gene were detected in several cetartiodactyl lineages (i.e., Suidae, Hippopotamidae, and Pecora), which originated in the middle Eocene, a geological period characterized with the increased climate seasonality. Lineage-specific expansions of AANAT and the associated functional enhancement in these lineages strongly suggest an improvement in regulating photoperiodic response to adapt to seasonal climate changes. In contrast, independent inactivating mutations or deletions of the AANAT locus were identified in the four pineal-deficient clades (cetaceans, sirenians, xenarthrans, and pangolins). Loss of AANAT function in cetaceans and sirenians could disrupt the sleep-promoting effects of pineal melatonin, which might contribute to increasing wakefulness, adapting these clades to underwater sleep. The absence of AANAT and pineal glands in xenarthrans and pangolins may be associated with their body temperature maintenance. The present work demonstrates a far more complex and intriguing evolutionary pattern and functional diversity of mammalian AANAT genes than previously thought and provides further evidence for understanding AANAT evolution as driven by rhythmic adaptations in mammals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.