Abstract

Approximately one-third of children with autism spectrum disorder (ASD) reportedly lose skills within the first 3years, yet a causal mechanism remains elusive. Considering evidence of strong genetic effects for ASD and findings that distinct phenotypes in ASD associate with specific genetic events, we examined rates of parent-reported regression in the Simons Simplex Collection with likely gene disrupting mutations from five distinct classes: FMRP target genes, genes encoding chromatin modifiers, genes expressed preferentially in embryos, genes encoding postsynaptic density proteins, and essential genes. Children with ASD and mutations in postsynaptic density genes were more likely to experience regression, while a trend suggested that children with ASD and mutations in embryonic genes were less likely to have skill losses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.