Abstract
Due to their intracellular permeability, protein transduction domains (PTDs) have been widely used to deliver proteins and peptides to mammalian cells. However, their performance in gene delivery has been relatively poor. To improve the efficiency of PTD-mediated gene delivery, we synthesized a new peptide, KALA-Antp (K-Antp), which contains the sequences for PTD of the third α-helix of Antennapedia (Antp) homeodomain and the fusogenic peptide KALA. In this configuration, Antp is designed to provide the cell permeation capacity and nuclear localization signal, while the KALA moiety to promote cellular entry of the peptide–DNA complex. An optimal K-Antp/DNA formula was nearly 400–600 fold more efficient than Antp or poly-lysine-Antp (L-Antp) in gene delivery, and comparable or superior to a commercial liposome. The K-Antp-mediated plasmid DNA transfection not only exhibited temperature sensitivity, reflecting the involvement of an endocytosis-mediated gene transfer mechanism similar to other known PTDs, but also temperature insensitivity, suggesting the role of an energy-independent mechanism. Incorporation of an endosomolytic polymer polyethylenimine (PEI) into the system or treatment with chloroquine further increased the efficiency of K-Antp-mediated gene delivery. These results demonstrate the potential of the combinatorial use of KALA, Antp and PEI in the development of efficient PTD-derived gene carriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.