Abstract

Conventional therapeutic options to treat chronic angina pectoris are pharmacological interventions, coronary bypass surgery (CABG) and percutaneous coronary intervention (PCI). In animal models, it was shown that gene delivery strategies harbour an exciting potential to support and maybe even replace conventional anti-angina treatments, but the translation of the basic science to clinical practise appears problematic. Gene therapy targeting key elements of neointima formation (e.g. cell cycle regulators, metalloproteinases, inflammation and oxidative stress) reduces vein graft and stent failure in experimental models. Additionally, systemic gene delivery of genes targeting NO production, oxidative stress, inflammation and foam cell formation has been shown to prevent atherosclerosis in different animal models. During CABG the vein graft can be transfected ex vivo and during PCI, a stent carrying transfection vectors can be deployed. Both strategies result in the induction of local transgene expression at the site of interest. This limits unwarranted transgene expression and the toxicity seen with systemic gene delivery. However, with the development of new transfection vectors, able to induce local transgene expression without detrimental side effects, systemic anti-inflammatory and anti-oxidative, gene delivery could be a powerful tool in secondary prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.