Abstract

Purpose: The NLRP3 inflammasome, a cytoplasmic signal transduction complex that regulates inflammation, has been implicated in the pathogenesis of age-related macular degeneration (AMD), the leading cause of visual impairment in industrialized countries. We tested the therapeutic effect of anti-inflammatory gene therapy, delivered preventively, in Liver-X-Receptor alpha knockout (LXRα-/-) mice, which exhibit features of dry AMD. Methods:LXRα-/- mice were treated with an adeno-associated virus (AAV) vector that delivers a secretable and cell-penetrating form of the caspase activation and recruitment domain (CARD). A sGFP-FCS-TatCARD-AAV or sGFP-FCS (control) vector was delivered intravitreally to 3-5 month-old, LXRα-/- mice, who were then aged to 15-18 months (12-13 month treatment). Retinal function and morphology were assessed pre- and post-treatment. Results: TatCARD treated LXRα-/- mice did not show improvement in rod and cone photoreceptor function, measured by dark adapted a- and b-wave amplitudes, and rod-saturated b-wave amplitudes. We found a sex-dependent, significant therapeutic effect in c-wave amplitudes in the TatCARD treated mice, which exhibited maintenance of amplitudes in comparison to the significant decline recorded in the control treated group, indicating a therapeutic effect mediated in part through retinal pigment epithelial (RPE) cells. Additionally, the retinas of the TatCARD treated mice exhibited a significant decline in the concentration of interleukin-1 beta (IL-1β) concomitant with modulation of several inflammatory cytokines in the retina and RPE-choroid tissues, as measured by ELISA and cytokine array, respectively. Conclusion: Collectively, these results support that anti-inflammatory gene constructs such as AAV-TatCARD may be considered for the treatment of inflammation in AMD and other ocular diseases of the posterior pole in which inflammation may play a role. Furthermore, our findings emphasize the need to carefully consider potential sex-different responses when assessing potential therapies in pre-clinical models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.