Abstract

Inflammation is a process that underlies sight-threatening ocular surface diseases, and gene supplementation with the plasmid that encodes for p-IL10 will allow the sustained de novo synthesis of the cytokine to occur in corneal cells, and provide a long-term anti-inflammatory effect. This work describes the development of solid lipid nanoparticle systems for the delivery of p-IL10 to transfect the cornea. In vitro, vectors showed suitable features as nonviral vectors (size,ζ-potential, DNA binding, protection and release), and they were able to enter and transfect human corneal epithelial cells. Ex vivo, the vectors were found to transfect the epithelium, the stroma and the endothelium in rabbit corneal explants. Distribution of gene expression within the cell layers of the cornea depended on the composition of the four vectors evaluated. Solid lipid nanoparticle-based vectors are promising gene delivery systems for corneal diseases, including inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.