Abstract

Phytopathogenic fungi are known to secrete specific proteins which act as virulence factors and promote host colonization. Some of them are enzymes with plant cell wall degradation capability, like pectate lyases (Pls). In this work, we examined the involvement of Pls in the infection process of Magnaporthe oryzae, the causal agent of rice blast disease. From three Plgenes annotated in the M. oryzae genome, only transcripts of MoPL1 considerably accumulated during the infection process with a peak at 72 h post inoculation. Both, gene deletion and a constitutive expression of MoPL1 in M. oryzae led to a significant reduction in virulence. By contrast, mutants that constitutively expressed an enzymatic inactive version of MoPl1 did not differ in virulence compared to the wild type isolate. This indicates that the enzymatic activity of MoPl1 is responsible for diminished virulence, which is presumably due to degradation products recognized as danger associated molecular patterns (DAMPs), which strengthen the plant immune response. Microscopic analysis of infection sites pointed to an increased plant defense response. Additionally, MoPl1 tagged with mRFP, and not the enzymatic inactive version, focally accumulated in attacked plant cells beneath appressoria and at sites where fungal hyphae transverse from one to another cell. These findings shed new light on the role of pectate lyases during tissue colonization in the necrotrophic stage of M. oryzae's life cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call