Abstract

Nitrogen metabolism is essential for most cellular activities. Therefore, a deep understanding of its regulatory mechanisms is necessary for the efficient utilization of nitrogen sources for Saccharomyces cerevisiae. In this study, a gene co-expression network was constructed for S. cerevisiae S288C with different nitrogen sources. From this, a key gene co-expression module related to nitrogen source preference utilization was obtained, and 10 hub genes centrally located in the co-expression network were identified. Functional studies verified that the endocytosis-related genes CAP1 and END3 significantly increased the utilization of multiple non-preferred amino acids and reduced the accumulation of the harmful nitrogen metabolite precursor urea by regulating amino acid transporters and TOR pathway. The mitochondria-related gene ATP12, MRPL22, MRP1 and NAM9 significantly increased the utilization of multiple non-preferred amino acids and reduced accumulation of the urea by coordinately regulating nitrogen catabolism repression, Ssy1p-Ptr3p-Ssy5p signaling sensor system, amino acid transporters, TOR pathway and urea metabolism-related pathways. Furthermore, these data revealed the potential positive effects of endocytosis and mitochondrial ribosomes protein translation on nitrogen source preference. This study provides new analytical perspectives for complex regulatory networks involving nitrogen metabolism in S. cerevisiae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.