Abstract

Gene selection from high-dimensional microarray gene-expression data is statistically a challenging problem. Filter approaches to gene selection have been popular because of their simplicity, efficiency, and accuracy. Due to small sample size, all samples are generally used to compute relevant ranking statistics and selection of samples in filter-based gene selection methods has not been addressed. In this paper, we extend previously-proposed simultaneous sample and gene selection approach. In a backward elimination method, a modified logistic regression loss function is used to select relevant samples at each iteration, and these samples are used to compute the T-score to rank genes. This method provides a compromise solution between T-score and other support vector machine (SVM) based algorithms. The performance is demonstrated on both simulated and real datasets with criteria such as classification performance, stability and redundancy. Results indicate that computational complexity and stability of the method are improved compared to SVM based methods without compromising the classification performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.