Abstract

We have employed Chinese hamster ovary cells synchronized by mitotic selection to study the replication and amplification of the dihydrofolate reductase gene. Using bromodeoxyuridine to differentially label newly replicated DNA, we show that the dihydrofolate reductase gene is replicated during the first 2 h of S phase, a time when, at most, 10% of the total genome has been replicated. We find that a 6-h inhibition of DNA synthesis by hydroxyurea beginning 2 h after the initiation of S phase markedly increases the frequency with which cells become resistant to a 100-fold increment in methotrexate. When DNA synthesis resumes following removal of the hydroxyurea, virtually all of the DNA replicated prior to inhibition, including the dihydrofolate reductase gene, is rereplicated. Analysis of the dihydrofolate reductase enzyme content of cells 24 h after treatment with hydroxyurea using the fluorescence-activated cell sorter reveals a subset of cells with elevated dihydrofolate reductase. It is this subset that contains additional copies of the dihydrofolate reductase gene and from which emerge highly methotrexate-resistant cells. We propose that the initial event of amplification is the rereplication of a variable, but relatively large, amount of the genome. As cells are subsequently placed under selection, a number of processes, including recombination events and loss of nonselected DNA sequences occur, resulting in what appears as differential gene amplification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.